Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plasma wakefield accelerators use tabletop equipment to produce relativistic femtosecond electron bunches. Optical and X-ray diagnostics have established that their charge concentrates within a micrometre-sized volume, but its sub-micrometre internal distribution, which critically influences gain in free-electron lasers or particle yield in colliders, has proven elusive to characterize. Here, by simultaneously imaging different wavelengths of coherent optical transition radiation that a laser-wakefield-accelerated electron bunch generates when exiting a metal foil, we reveal the structure of the coherently radiating component of bunch charge. The key features of the images are shown to uniquely correlate with how plasma electrons injected into the wake: by a plasma-density discontinuity, by ionizing high-Zgas-target dopants or by uncontrolled laser–plasma dynamics. With additional input from the electron spectra, spatially averaged coherent optical transition radiation spectra and particle-in-cell simulations, we reconstruct coherent three-dimensional charge structures. The results demonstrate an essential metrology for next-generation compact X-ray free-electron lasers driven by plasma-based accelerators.more » « less
-
Abstract Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field.more » « less
-
The European XFEL delivers up to 27000 intense (>1012photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.more » « less
An official website of the United States government
